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Abstract

One of the differences between Traditional Chinese Medicine (TCM) and its ordinary counterpart is the
composition of products. The ingredients of TCM are complex mixtures of natural products or extracts
with various active constituents while in ordinary medicine, all of the active ingredients are single
compounds and can easily be analyzed. Therefore, the classification of TCM with complex mixtures
is not well adapted with the classical discriminative techniques which apply to ordinary medicine.
Quality assessment of TCM is an important factor for analyzing those complex matrices and gives
comprehensive quantitative data about the global ingredients. Electronic nose (E-nose) can be used for
quality assessment and classification of TCM. The aim of study is to classify four groups of hundred-
grass-oil (HGO), one of the popular TCM, from different production batches using a portable E-nose
(PEN3). Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to
investigate the classification ability of PEN3. The results of PCA analysis showed a good separation
among four groups of HGO. Loadings analysis was used to optimize the number of sensors that show a
higher influence on the distribution of the PCA plot. A better classification result is obtained by LDA
analysis.

Keywords: Traditional Chinese Medicine (TCM); Electronic Nose (E-nose); Identification of
Hundred-grass-oil; PCA; LDA

1 Introduction

Improvements in electronic nose technology over the last 20 years have enabled us to employ E-
nose in automatic identification of HGO among other TCM and classifying four groups of HGO
based on their production batches. A portable PEN3 E-nose comprising an array of metal oxide
semiconductor (MOS) sensors with partial specificity and an appropriate pattern recognition
system, making it capable of recognizing simple or complex odors [1].
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Pattern recognition techniques such as principal component analysis (PCA), linear discrimi-
nant analysis (LDA), discriminant function analysis (DFA), cluster analysis (CA), and artificial
neural network (ANN) have been used for data analysis in E-nose based applications [2, 3].In this
study,PCA and LDA techniques have been employed and their performance in classification of
the selected samples of HGO has been compared.

Based on the concept of “nasal olfaction”, one of traditional empirical methods for identifying
and classifying TCM [4], we proposed a simple and quick method for classifying TCM samples by
an E-nose. During the past few years, E-nose technology systems have gained remarkable devel-
opment. This technology ese instruments have been widely and successfully used in different fields
especially in food and beverage industry, such as identification of spoiled beef [5], detection and
evaluation of fish freshness [6, 7], modeling the ripening of Danish blue cheese [8], discrimination
or classification of wine [2, 9, 10], monitoring the aroma of different kinds of fruit [3, 11, 12, 13].
However, very little work has been conducted so far to classify TCM with an E-nose.The aim
of this study is to classify HGO from different production batches, using a pattern recognition
technique, and evaluate the discrimination capability of an e-nose system.

2 Materials and Methods

2.1 Experimental samples

This study was carried out using four groups of Luofushan HGO samples with different production
batches provided by Guangdong Luofushan Pharmaceutical Co. Ltd. as described in Table 1.
HGO is a kind of emerald green clarified liquid made of 79 different TCM with fragrant smell.

Table 1: Information of HGO samples used in this experiment

Group label Sample name Production batch Production date

p060528 HGO 1 L06E281 20060528

p070504 HGO 2 L07E041 20070504

p080118 HGO 3 L08A181 20080118

p080304 HGO 4 L08C041 20080304

2.2 Portable E-nose

Experiments were performed with a portable electronic nose (PEN3) produced by AIRSENSE
Analytics GmbH in Schwerin, Germany. PEN3 is equipped with an array of 10 different MOS
sensors positioned into a small chamber (V=1.8ml), a sampling apparatus and a pattern recogni-
tion software named WinMuster. Table 2 summarizes the sensitivity list of all sensors in PEN3.
The response data collected by PEN3 is defined as the ratio of conductance: G/G0. G represents
the resistance of each sensor in the chamber after the exposition to the headspace gas in the vial
and G0 represents the resistance while the sensors expose to the zero gas filtered by active carbon.
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Table 2: The sensitivity list of 10 sensors in PEN3

Number in Sensor Sensitive Detection Range

array name to /ppm

S1 W1C Aromatic components 10

S2 W5S Nitrogen oxides, very sensitive 1

S3 W3C Ammonia and aromatic components 10

S4 W6S Mainly hydrogen, selectively, (breath gases) 100

S5 W5C Alkanes and aromatic components 1

S6 W1S Propane 100

S7 W1W Sulfur organic compounds 1

S8 W2S Ethanol 100

S9 W2W romatic components and organic-sulfides 1

S10 W3S Propane(selective sometimes) 100

2.3 Experimental set up and data collection

Figure 1 shows the experimental set up for data collection which was carried out in an air-
conditioned laboratory where the temperature was kept at 27±1 degrees Celsius and the humidity
at 46±3%. The HGO samples with different production batches were injected into four vials (40
ml) labeled p060528, p070504, p080118 and p080304, respectively. The dose of each sample in
the vial is 0.5 ml. Then four vials were hermetically capped with plastic wrap for 1 hour in
order to generate a steady headspace respectively. The sampling time for each sample is 70
seconds, which is enough for each sensor to reach a stable value. The rinsing time is set as 110
seconds, during which the sensors are rinsed with charcoal filtered to force the signals of sensors
to baseline. One measurement circle would last for about 6 minutes. Meanwhile, due to the high
sensitivity of the second sensor W5S, the automatic dilution was set to be activated when the
prime transient response (G/G0) of sensor W5S rose above 3, in order to protect the sensor array
from being overloaded. Static headspace sampling (SHS) method was used because SHS is the

Fig. 1: Experimental Setup for headspace volatile sampling
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most common technique for its accessibility [15]. During the measurement process, the headspace
of each vial was pumped over the sensors in PEN3 with a constant flow speed of 400 ml/min.
The collected data set would be automatically stored in a personal computer connected to PEN3
after measurement was completed. The headspace gas of each vial of HGO sample was measured
8 times continuously. Thus 32 data sets were collected for all 4 groups of HGO.

3 Results and Discussion

3.1 Sensor response

The data sets acquired were first analyzed by Matlab 7.1 to reconstruct the response curves and
radial plot of the 10 sensors. Figure 2 shows the typical transient responses of the 10 sensors to
the four groups. The response curves represent the ratio of the conductance of each sensor versus
sampling time when the volatile gas of one sample group reached the sensor chamber. Figure 2
shows rapid change at the beginning of the sampling time particularly for sensor 2 (W5S). But
the curves reach to the steady state soon due to the automatic dilution. After approximately
40 seconds all the sensors reached stable values except sensor 2, which changed evenly after 60
seconds. The contributions of the 10 sensors to the four groups of HGO are similar by comparing
the response curves of the latter 30 seconds in the four graphs below. Some static features might

Fig. 2: Response curves of 10 sensors to the four groups against sampling time

be extracted from the data sets, such as the final conductance (G) of each sensor, conductance
increment (G=G-G0), the ratio of the conductance (G/G0) of each sensor and so on.

In this study, the ratio of the conductance of each sensor between the 61st and 64th second of
the sampling time was extracted as the static feature for further analysis.

3.2 Principal component analysis

Initially, the data sets were rescaled by dividing the data by the standard deviation. After analyz-
ing by PCA [14], the dimensionality of the data sets was reduced to a lower dimension. Usually
the first two principal components will carry the most information of the old variables. The
corresponding plots of the first two principle components are shown in Figure 3. The principal
components in the plot represent the eigenvectors of data sets processed by PCA and are pre-
sented in descending order. It is shown in Figure 4, that the first two components capture most
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information (88.73% totally) of the variance in the data sets. All the clusters of the groups were
dispersive and stretched obviously in the direction of transverse axis except that of the group
labeled p070504 which was a bit convergent. In the PCA plot the higher the interclass distance
between two clusters, the higher the difference between them. The first two groups (p060528 and
p070504) could be easily distinguished within the four clusters; however, the clusters of the latter
two groups (p080118 and p080304) did not differ much. This small overlap joint could be due to
the fact that the latter two groups are of closer production dates, making the aroma ingredient
of them seem to be more similar and therefore the sensors response to them are near akin.

Fig. 3: The PCA score plot of four groups measured using SHS

*The figure here means that the classification rate between group p060528 and group p070504
is 98.5%.

Table 3 shows the classification rate among the four groups calculated by WinMuster. Overall,
the classification rate is satisfying except that between group p080118 and group p080304 (only
72.7%).

Table 3: Information of HGO samples used in this experiment

p060528 p070504 p080118 p080304

p060528 – 98.5% 99.4% 99.6%

p070504 98.5% – 97.6% 99.3%

p080118 99.4% 97.6% – 72.7%

p080304 99.6% 99.3% 72.7% –

3.3 Loadings analysis

Single sensors may have a bad influence on the analysis result. That means, a sensor may only
react on disturbing compounds, not on compounds important for the discrimination. Useful
information for the selection of sensor signals to be eliminated may be obtained by the loadings
analysis.



2664 D. Luo et al. /Journal of Computational Information Systems 9: 7 (2013) 2659–2666

The loadings analysis is well correlated to the PCA; it is based on the same algorithm, but
in this case, it is calculated for the sensors themselves. It is useful to check for the influence
(loading) of a sensor on the distribution of data sets.The direction where the sensors in the
loadings analysis are located corresponds to the direction of the PCA plot distribution. By this
method we could switch off some sensors that had a minor influence on the distribution in the
PCA plot [16]. Figure 4shows a loading plot of the loading factors associate to PC1 and PC2 for
the samples. The points in the plot represent the sensors used in the experiment. Sensors, with
loading parameters close to zero for a particular principal component, have a low contribution to
the total response of the array, whereas high values indicates a discriminating sensor [12]. So we
could consider switching off the sensor that has less influence on the result of PCA analysis. If
a group of sensors have similar response to the samples, we could consider replacing the group
with one of its member. One group of sensors including W1C, W5S, W3C and W2W evidently

Fig. 4: Loadings analysis related to the first two principal components

have higher influence in the current pattern files than the second group including W6S, W5C,
W1S, W1W, W2S, and W3S6 sensors., among which Sensor W3S has almost no influence among
the second group of sensors while the other 5 sensors in this group have closer influence so that
they might be represented by one of the group member. Sensor W5C has a lower detection range
(1ppm) while exposure to aromatic components as shown in Table 2.

By considering the factors aforementioned, a subset of sensors including [W1C, W5S, W3C,
W5C (a representative from the second group) and W2W] sensors is retained as an optimized
sensor array. The corresponding PCA plot of data sets of these 5 sensors is shown in Figure 5.

3.4 Linear discriminant analysis

The response data of PEN3 for each group between the collection times (61st and 64th) were
extracted and analyzed by LDA analysis. The analytic result is shown in Figure 6. As is shown
in Figure 6, LDA function 1 (LD1) and function 2 (LD2) accounted for 95.017% and 3.2718% of
the variance, respectively. The clusters of the data sets are obviously divided into four groups,
allowing an easy discrimination of the four sample groups with different production batches. This
is very satisfactory because it clearly shows a better classification by LDA analysis.
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Fig. 5: The PCA score plot of the HGO groups by a subset of sensors

Fig. 6: Analytic result of the HGO groups by LDA

4 Conclusion

For the purpose of classification of TCMs (four groups of HGO samples with different production
batches), experiments have been carried out with PEN3. The results show that it is practical and
effectual to classify the congener TCMs samples by an electronic nose system and appropriate
pattern recognition algorithms.

The PCA analysis had a poor performance in clustering of the groups labeled p080118 and
p080304. However, a better classification result is obtained by LDA analysis. Besides, we could
use loadings analysis as a means of sensors optimization.

As a result of loading analysis it was found that with a subset of sensors including 5 most
sensible sensors, the clustering of the selected four groups seemed to be more convergent than
similar clustering approach using all sensors.
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